2. 데이터 표준화
from sklearn.preprocessing import StandardScalerX_ = StandardScaler().fit_transform(X)
3. PCA(2D)
from sklearn.decomposition import PCApca = PCA(n_components=2)
pc = pca.fit_transform(X_)
4. Categorize
import pandas as pdimport numpy as nppc_y = np.c_[pc,y]
df = pd.DataFrame(pc_y,columns=['PC1','PC2','diagnosis'])
5–1. Plot (matplotlib)
import matplotlib.pyplot as pltplt.scatter(x=df['PC1'],y=df['PC2'],c=df['diagnosis'])
노랑 양성, 보라 음성5–2. Plot2 (seaborn)
import seaborn as snssns.scatterplot(data=df,x='PC1',y='PC2',hue='diagnosis')
0 = 음성, 1 = 양성